IPA
IPA/block-7
Istilah “bilangan bulat” diadaptasi dalam Matematika dari bahasa Latin. Bilangan bulat=Integer artinya bulat atau utuh. Bilangan bulat sangat mirip dengan bilangan cacah, tetapi bilangan bulat juga termasuk bilangan negatif di antaranya.
Apa Itu Bilangan Bulat ?
Bilangan bulat adalah bilangan tanpa bagian desimal atau pecahan, dari himpunan bilangan negatif dan positif, termasuk nol. Contoh bilangan bulat adalah: -5, 0, 1, 5, 8, 97, dan 3.043.
Satu set bilangan bulat, yang direpresentasikan sebagai Z, meliputi:
Bilangan Bulat Positif: Suatu bilangan bulat positif jika lebih besar dari nol. Contoh: 1, 2, 3 . . .
Bilangan bulat negatif: Bilangan bulat negatif jika kurang dari nol. Contoh: -1, -2, -3 . . .
Nol didefinisikan sebagai bukan bilangan bulat negatif atau positif. Ini adalah bilangan bulat.
Z = {... -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, ...}
bilangan bulat, bilangan bulat positif atau negatif atau 0. Bilangan bulat dihasilkan dari himpunan bilangan hitung 1, 2, 3,… dan operasi pengurangan. Ketika angka penghitungan dikurangi dari dirinya sendiri, hasilnya adalah nol; misalnya, 4 4 = 0. Ketika angka yang lebih besar dikurangi dari angka yang lebih kecil, hasilnya adalah bilangan bulat negatif; misalnya, 2 3 = 1. Dengan cara ini, setiap bilangan bulat dapat diturunkan dari bilangan yang dihitung, menghasilkan himpunan bilangan tertutup di bawah operasi pengurangan
Dalam matematika, bilangan bulat adalah kumpulan bilangan bulat dan bilangan negatif. Mirip dengan bilangan bulat, bilangan bulat juga tidak termasuk bagian pecahan. Dengan demikian, kita dapat mengatakan, bilangan bulat adalah bilangan yang bisa positif, negatif, atau nol, tetapi tidak bisa menjadi pecahan. Kita dapat melakukan semua operasi aritmatika, seperti penambahan, pengurangan, perkalian dan pembagian, pada bilangan bulat. Contoh bilangan bulat adalah, 1, 2, 5,8, -9, -12, dst. Simbol bilangan bulat adalah “Z“.
Simbol
Bilangan bulat diwakili oleh simbol 'Z'.
Z= {……-8,-7,-6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8,……}
Jenis Bilangan Bulat
Bilangan bulat datang dalam tiga jenis:
Nol
Nol bukanlah bilangan bulat positif atau negatif. Ini adalah bilangan netral yaitu nol tidak memiliki tanda (+ atau -).
Bilangan bulat positif
Bilangan bulat positif adalah bilangan asli atau disebut juga bilangan cacah. Bilangan bulat ini juga terkadang dilambangkan dengan Z+. Bilangan bulat positif terletak di sisi kanan 0 pada garis bilangan.
Z+ → 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,….
Bilangan bulat negatif
Bilangan bulat negatif adalah negatif dari bilangan asli. Mereka dilambangkan dengan Z–. Bilangan bulat negatif terletak di sisi kiri 0 pada garis bilangan.
Z– → -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16 , -17, -18, -19, -20, -21, -22, -23, -24, -25, -26, -27, -28, -29, -30,….
.
Bagaimana cara mewakili bilangan bulat pada Garis Angka?
Seperti yang telah kita bahas tiga kategori bilangan bulat, kita dapat dengan mudah mewakili mereka pada garis bilangan berdasarkan bilangan bulat positif, bilangan bulat negatif dan nol.
Nol adalah pusat bilangan bulat pada garis bilangan. Bilangan bulat positif terletak di sebelah kanan nol dan bilangan bulat negatif terletak di sebelah kiri
Apa itu Garis Bilangan?
Garis bilangan adalah representasi visual dari angka pada garis lurus. Garis ini digunakan untuk perbandingan angka-angka yang ditempatkan pada interval yang sama pada garis tak terbatas yang memanjang di kedua sisi, secara horizontal.
Sama seperti bilangan lainnya, himpunan bilangan bulat juga dapat direpresentasikan pada garis bilangan.
Grafik bilangan bulat
Operasi Bilangan Bulat
Empat operasi aritmatika dasar yang terkait dengan bilangan bulat adalah:
Ada beberapa aturan untuk melakukan operasi ini.
Sebelum kita mulai mempelajari metode operasi bilangan bulat ini, kita perlu mengingat beberapa hal.
Aturan Bilangan Bulat
Operasi Aritmatika pada Bilangan Bulat
Operasi matematika dasar yang dilakukan pada bilangan bulat adalah:
Sambil menjumlahkan dua bilangan bulat yang bertanda sama, tambahkan nilai absolutnya, dan tuliskan jumlah dengan tanda yang diberikan bersama bilangan tersebut.
Sebagai contoh,
Sambil menjumlahkan dua bilangan bulat yang berbeda tanda, kurangi nilai mutlaknya, dan tuliskan selisihnya dengan tanda bilangan yang memiliki nilai mutlak terbesar.
Sebagai contoh,
Pengurangan Bilangan Bulat
Saat mengurangkan dua bilangan bulat, ubah tanda bilangan kedua yang dikurangi, dan ikuti aturan penjumlahan.
Sebagai contoh,
Perkalian Bilangan Bulat
Saat mengalikan dua bilangan bulat, aturannya sederhana.
Sebagai contoh,
bilangan bulat, bilangan bulat positif atau negatif atau 0. Bilangan bulat dihasilkan dari himpunan bilangan hitung 1, 2, 3,… dan operasi pengurangan. Ketika angka penghitungan dikurangi dari dirinya sendiri, hasilnya adalah nol; misalnya, 4 4 = 0. Ketika angka yang lebih besar dikurangi dari angka yang lebih kecil, hasilnya adalah bilangan bulat negatif; misalnya, 2 3 = 1. Dengan cara ini, setiap bilangan bulat dapat diturunkan dari bilangan yang dihitung, menghasilkan himpunan bilangan tertutup di bawah operasi pengurangan
Pembagian bilangan bulat
Aturan untuk membagi bilangan bulat mirip dengan perkalian.
Demikian pula
Sifat-sifat Bilangan Bulat
Sifat utama bilangan bulat adalah:
Sifat Tertutup
Menurut Sifat bilangan bulat, ketika dua bilangan bulat ditambahkan atau dikalikan bersama-sama, itu menghasilkan bilangan bulat saja. Jika a dan b bilangan bulat, maka:
Contoh:
Sifat komutatif
Berdasarkan sifat komutatif bilangan bulat, jika a dan b dua bilangan bulat, maka:
Contoh:
Tetapi untuk sifat komutatif tidak berlaku untuk pengurangan dan pembagian bilangan bulat.
Sifat Asosiatif
Sesuai dengan sifat asosiatif , jika a, b dan c adalah bilangan bulat, maka:
Contoh:
Mirip dengan komutatifitas, asosiatif hanya berlaku untuk penjumlahan dan perkalian bilangan bulat.
Sifat distributif
Berdasarkan sifat distributif bilangan bulat, jika a, b, dan c bilangan bulat, maka:
Contoh: Buktikan bahwa: 3 x (5 + 1) = 3 x 5 + 3 x 1
Karena, LHS = RHS
Dalam matematika, LHS adalah singkatan untuk (the left-hand side) ruas kiri persamaan. Demikian pula, RHS (the right-hand side) adalah sisi kanan. Kedua sisi memiliki nilai yang sama, dinyatakan secara berbeda, karena kesetaraan adalah simetris.
Oleh karena itu, terbukti.
Sifat Invers Aditif
Jika a adalah bilangan bulat, maka sesuai dengan sifat invers aditif bilangan bulat,
a + (-a) = 0
Oleh karena itu, -a adalah invers aditif dari bilangan bulat a.
Sifat invers perkalian
Jika a adalah bilangan bulat, maka sesuai dengan sifat invers perkalian bilangan bulat,
a x (1/a) = 1
Jadi, 1/a adalah invers perkalian dari bilangan bulat a.
Sufat Identitas Bilangan Bulat
Unsur identitas bilangan bulat adalah:
Contoh: -100,-12,-1, 0, 2, 1000, 989 dst…
Sebagai satu set, itu dapat direpresentasikan sebagai berikut:
Z= {……-8,-7,-6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8,……}
Implementasi bilangan bulat
Bilangan bulat bukan hanya angka di atas kertas; mereka memiliki banyak aplikasi kehidupan nyata. Pengaruh bilangan positif dan negatif di dunia nyata berbeda. Mereka terutama digunakan untuk melambangkan dua situasi yang bertentangan.
Misalnya, ketika suhu di atas nol, angka positif digunakan untuk menunjukkan suhu, sedangkan angka negatif menunjukkan suhu di bawah nol. Mereka membantu seseorang untuk membandingkan dan mengukur dua hal seperti seberapa besar atau kecil atau lebih atau lebih sedikitnya dan karenanya dapat mengukur sesuatu.
Beberapa situasi kehidupan nyata di mana bilangan bulat ikut bermain adalah skor pemain dalam turnamen golf, sepak bola, dan hoki, peringkat film atau lagu, di bank, kredit dan debit direpresentasikan sebagai jumlah positif dan negatif masing-masing.
Pertanyaan yang Sering Diajukan tentang Bilangan Bulat
Bilangan Bulat adalah kombinasi dari nol, bilangan asli dan invers aditifnya. Itu dapat direpresentasikan dalam garis bilangan tidak termasuk bagian pecahan. Dilambangkan dengan Z.
Bilangan bulat adalah himpunan bilangan positif dan negatif bersama dengan nol dan tidak memiliki rumus apa pun.
Contoh bilangan bulat adalah 3, -5, 0, 99, -45, dst.
Invers aditif bilangan asli adalah bilangan bulat negatif, seperti -1,-2,-3,-4,-5, dan seterusnya
Bilangan bulat terdiri dari tiga jenis:
Nol, bilangan bulat positif dan bilangan bulat negatif
Dibawah ini adalah Soal, berikut kunci jawaban dan pembahasannya
Tag:
contoh bilangan bulat
anggota bilangan bulat
bilangan bulat kelas 6
bilangan bulat positif
bilangan bulat negatif
contoh soal bilangan bulat
cara menghitung bilangan bulat
apakah 0 bilangan bulat
soal bilangan bulat kelas 6
soal bilangan bulat kelas 7
contoh soal bilangan bulat positif dan negatif kelas 6
operasi hitung bilangan bulat
contoh bilangan bulat
Tidak ada komentar
Posting Komentar